

First results of a 2000+ FPS OCAM² camera: OCAM^{2K}

FIRST LIGHT IMAGING SAS

Jeanluc.gach@firstlight.fr

OCAM² heritage

- Initially the OCAM program comes from the OPTICON detector development
- FP6/FP7 & ESO funding for ESO XAO system (SPHERE)

- 2009 : OCAM & technology transfer to First Light Imaging, LAM spinoff
- 2011: OCAM² is commercially available
- 2013: OCAM^{2K} is ready and in production

OCAM2 technology path

First Light Business

The biggest telescopes in the world.

The sharpest labs and institutes.

Some advanced industrial companies.

ESO Wavefront Sensor

First light has been subcontracted for the design of the critical elements of the ESO WFS (OCAM2 IP)

OCAM2 closed loop on the sky - ONERA

OCAM2 Results on CHARA

Telescopes (6 x 1m)

Delay lines

Beam recombinator focus

HD58923 FFT 3T observation Photon counting mode

Results courtesy of P. Berio
Obs. Côte d'Azur

OCAM²

OCAM2 performance

Test measurement	Result	Unit
Nominal speed (full frame)	1503	FPS
Mean readout noise	~ 0.13	e-
Dark signal at 1503 fps	< 0.01	e-/pix/
		frame
Dark signal at 25 fps	~ 0.05	e-/pix/
		frame
Detector operating temperature	- 45	°C
Peak Quantum Efficiency at 650 nm	94	%
Linearity at gain x1000 from 10 to 150 ke	<3	%
Image area Full Well Capacity at gain x1, 1503 fps	300	ke⁻
Parallel CTE at gain x1, 1503 fps	>0.99995	N/A
Serial CTE at gain x1, 1503 fps	0.99994	N/A

See AO4ELT2 paper for detailled performances: http://ao4elt2.lesia.obspm.fr/spip.php?article552

OCAM^{2K} project

- Development carried by First Light Imaging with internal ressources
- Goal: increase the OCAM2 camera speed to more than 2000 FPS.

- Need to overcome the CCD intrinsic limitations: designed for 1200 FPS min, 1500 goal
- 18.6 Mpixel rate : unprecedented L3CCD readout speed

CCD limitations

- Output amplifier designed for 15MHz bandwidth
- 2000+ FPS needs a 18MHz+ operation...

Electronics constraints [1]

Second stage bandwidth... & second order systems

Conclusion: overall sensitivity scales with second stage bandwidth when the first stage (CCD amp) is used below the cutoff frequency.

OCAM^{2K} uses advanced high bandwidth (100MHz) low noise amplifiers

Electronics constraints [2] CCD drive @ 18.6 MHz... is not simple

CCD phase model (simplified)

- "I believe we've had a problem here
- "This is Houston, say again please
- "Houston, we've had a problem, a CCD220 fried

Electronics constraints [3] CCD drive @ 18.6 MHz... is not simple

Pixel total time: 53ns

264 Mbytes/s of data

Clock overlap Controlled @ 1ns (sequencer resolution)

Settling time to 0.1%: 12ns (100MHz bandwidth)

Electronics constraints [4]

- HV Phase control: drive a ~100pF CCD phase with near 45V amplitude at
- 18.6 MHz with millivolt amplitude control...

Very challenging...

- Effect of sensitivity loss on noise
- Effect of bandwidth increase on noise
- Effect of « overclocking » on Charge Transfer Efficiency
- Power dissipation increase
- Overall performances...

E pur si muove!*

* © Galileo

2067 FPS full frame

Just put a F1 in your AO loop!

E pur si muove velocemente!*

* © Galileo, approx

The fastest WFS ever

And it makes images!

3623 FPS in binning mode (120x120 pixels)

No noise structure

Measurements

 Measured noise: no noise degradation, made possible with better preamp and sensivity loss countermeasures

Parallel Charge Transfer Efficiency (PCTE)

OCAM²

1	0.999946
2	0.999950
3	0.999957
4	0.999958
5	0.999949
6	0.999946
7	0.999954

OCAM^{2K}

1	0,999993
2	0,999963
3	0,999956
4	0,999977
5	0,999979
6	0,999955
7	0,999987

No noticeable PCTE degradation in spite of a faster readout

Dark

OCAM²

Output	Gain x	Dark (e/pixel/frame)
(644	0.0025
1	644	0.0020
2	642	0.0017
3	586	0.0032
4	613	0.0023
5	708	0.0016
6	767	0.0019
7	645	0.0029
Mean	656	0.0023

 $OCAM^{2K}$

Output		Gain x	Dark (e/pixel/frame)
()	610	0,0031
	1	644	0,0023
	2	520	0,0018
,	3	491	0,0021
4	4	615	0,0022
Į.	5	657	0,0019
(5	574	0,0005
	7	570	0,0024
Mean		585	0,0020

No significative variation, dark is constant an negligible Dark is CIC (Clock induced charge) limited as expected No increase of CIC due to faster clocking

OCAM² vs OCAM^{2K}

Test measurement	OCAM ²	OCAM ^{2K}	Unit
Nominal speed (full frame)	1503	2067	FPS
Mean readout noise (full frame, full speed)	0.13	0.13	e-
Pure Latency	60	43	μs
Dark signal at 1503 fps	0.0023	0.002	e-/pix/
			frame
Detector operating temperature	- 45	-45	°C
Peak Quantum Efficiency at 650 nm	94	94	%
Linearity at gain x1000 from 10 to 150 ke	<3	<3	%
Image area Full Well Capacity at gain x1, 1503 fps	300	300	ke⁻
Parallel CTE at gain x1, 1503 fps	0.9999	0.9999	N/A
Serial CTE at gain x1, 1503 fps	0.9999	0.9999	N/A

Implementation ideas for ELTs

And Smaller telescopes

Pyramid WFS:

see 2 previous talks of Valentina Viotto & Fernando Quiros-Pacheco

Poster 13429

Kacem El Hadi:
Pyramid WFS with an OCAM² =>up to 80x80 subapertures, 2KHz,

subelectron read noise!

Implementation ideas for ELTs

And Smaller telescopes

FLI WFS development roadmap

Q3 2011 : First Light Imaging created

OCAM 3

Refer to P. Feautrier/G. Finger invited talk (yesterday)
"Visible and Infrared Wavefront Sensing detectors review"

OCAM

OCAM II

Conclusion

- OCAM^{2K} is now ready and showed more than 2000 FPS frame rate (full frame)
- Overall performance is globally better than OCAM² cameras in spite of the increased speed
- OCAM^{2K} benefits from OCAM² heritage and enters in production now

www.firstlight.fr

You're welcome to see OCAM2K in operation on the FLI booth

FLI will offer fresh beers after the talks (today, ~18h30 to 20h00)