

GLAO in the visible: the SAM experience

Andrei Tokovinin NOAO/CTIO

Outline

- Status & performance
- Science with SAM
- Lessons learned
- Relevance to ELTs

10min H α FWHM 0.33"

SOAR Adaptive Module is a unique facility instrument delivering improved seeing at optical wavelengths. It uses a UV Rayleigh laser to compensate groundlayer turbulence partially at the 4-m telescope.

Status of SAM

- 11 nights over last year;6 with good results
- First paper accepted

ArXiv:1304.4880

Commissioning, science verification, operation are mixed

CCD imager 4Kx4K pixel 45mas, 3'x3' BVRI +Hα

Performance: two good nights

Performance: a poor night (with good seeing)

Cerro Pachon, 31/1 Oct 2012

Small gain in FWHM

No direct correlation between SAM resolution and site seeing

Other performance metrics

- FWHM uniformity over the field (often <2%)</p>
- \blacksquare PSF (Moffat profile with β ~2)
- Ellipticiy (typ. <0.05)</p>
- Overhead (record: ~10min), loop robustness
- Artifacts

B-filter, 3 min

Correction uniformity over field

SAM science. I.

Stellar populations in crowded fields

L.Fraga et al., AJ ArXiv:1304.4880 globular cluster NGC 6496

Competition with HST Collaboration with GEMS

Non-uniform PSF is OK

SAM science II.

Nebulae,star formation(proplyds etc)

Feb. 26, 2013

Exp. 60s

 $(H\alpha,V,B)\rightarrow (rgb)$

FWHM 0.35"

Fragment

(nebula 72")

Best ground-based image of NGC 2440

SAM science III.

- Small targets: galaxies, gravitational arcs, lensed quasars, solar-system bodies (Pluto, asteroids, comets), binary companions. LSST... Only on-axis FWHM matters!
- Future: imaging+spectroscopy (IFU and/or MOS)

Lensed quasar SDSS_0924 (0.5" in *B*, 0.4" in *I*). Jan. 2013, 5-min. exp

SAM science verification proposals

- 16 proposals for ~60h, mostly dark time
- 20h allocated (Apr. 17,18), lost to telesc. failure
- Galactic: clusters, planetary nebulae, pulsar shock, triple star
- Extragalactic: polar-ring galaxies, compact groups, gravitational lenses, "green beans"
- Solar system: Pluto, comets (non-siderial track?)

Forming future SAM user base

SAM operation

- Laser propagation restrictions (LCH): manageable
- Laser system: "set-and-forget". LGS loop is very stable (work with 2x2 binning, 440Hz). UV laser 7.5W power.
- The LGS spots are affected by local seeing (1.5" to 2").
- Guide-star acquisition depends on precise pointing (needs acquisition images)

SAM at a glance

What works well in SAM

- Laser, LLT, laser beam control. Enough power!
- WFS with Pockels cell
- Tip-tilt guiders with APD (over-light protection)

To be improved (next time)

- Need an acquisition camera!
- Need "truth WFS" and/or NGS mode
- Higher-order DM (work in the blue!)
 (only 40 modes are now corrected)
- Pyramid WFS?
- Better thermal control!
- Better motion control
- Software (4 modules, 3 authors)

Performance in the blue: a weak GL?

Feb. 26 2013, UT 2:10: FWHM=0.35" in band B (??),

- The GL turbulence was weak
- SAM compensated mostly static aberrations & dome
- •DIMM measured wrong

GLAO 4 ELTs

- Strong science case for improved seeing in the visible
- Adaptive secondaries make it easier, just need lasers
- Need to compensate vibrations and dome seeing

END