The AO modes for HARMONI: from classical to Laser-assisted tomographic AO systems

T. Fusco1,2, S. Meimon1
M. Tesca3, N. Schwartz4,
N. Thatte3, F. Clarke3,
M. LeLouarn5, N. Hubin5
H. Schnetler4, I. Bryson4,

1ONERA, Optics Department
2LAM, Observatoire de Marseille
3Oxford University
4UK-ATC
5ESO
HARMONI General Overview

- First light general purpose Integral Field Spectrograph for E-ELT
 - Work horse instrument with wide appeal
 - Early ‘highlight’ science on key objects/projects
 - Low/no technology risks
- V-K (0.47-2.45 µm) spectral coverage
- R=4000,10000,20000 resolutions
- 40,20,10 & 4mas pixel scales
- 256x128 pixel field of view (image slicer with 32000 spaxels)
 - Eight Hawaii-4 detectors
 - Diff limit field still only 1.0” x 0.5”!

N. Thatte’s Talk yesterday afternoon
Adaptive Optics systems for Harmoni

Performance

- **SCAO**
 - SR = 100%
 - ~ 70% in K, SC < a few %

- **LTAO: ATLAS**
 - ~ 50% in K, SC > 50%

- **GLAO-NGS**
 - reference stars
 - high altitude layer
 - ground layer
 - ground conjugate DM
 - on-axis WFS
 - Telecope

Sky coverage

- SC = 100%
Common key aspects for all AO systems

- Telescope residual defects after correction by M4
- Residual windshake
- Control of M4 / M5
- Pupil stabilisation
- Optical axis stabilisation
 - Coronagraphic imaging
 - Astrometry
- Overhead minimization: every second counts!
 - Should be smaller than a few minutes.
 - Identification processes rather than on-sky calibration!
Telescope residual defects

111 nm

SR = 90 % @ K
Telescope residual defects

SR = 90% @ K
Residual windshake (corrected by M4/M5)

Conservative assumption:
- 2 mas for SCAO
- 3 mas for LTAO

~1 mas

no noise
700 Hz bandwidth
SCAO for Harmoni: Why?

- Best performance for bright objects
 - Exoplanet characterisation (SPHERE follow up)
 - Solar system observation

- First year(s) of operation – risk mitigation for LTAO
 - observe as much objects as we can with a « very decent » image quality
 - acquire as much feedback as possible on the telescope before integrating complex AO system

Win-win strategy
SCAO specificities

- From science case req.
 - Solar system observation
 - Differential tracking for solar system object (up to 100”/h)
 - WFS on extended object (goal 5”)
 - Exoplanet characterisation
 - Coronagraphic imaging
 - Very accurate NCPA correction
 - Very accurate optical axis control

- Technical requirements
 - Warm AO (outside Harmoni Cryostat)
SCAO : main trade-offs

- SH or Pyramid → depend on WFS-wavelength
 - Baseline : 0.45 – 0.9 µm with SH BUT Pyramid under study !!!!
 - Sub-aperture FoV : between 2 and 5” → trade-off between pixel size and number
 - 4.2” with 0.35” pixel size and 74x74 sub-ap => 900x900 pixels
 - 4.0” with 0.50” pixel size and 74x74 sub-ap => 600x600 pixels

- Pupil derotation : numerical vs optical
- ADC or not
 - critical for Pyramid (Full pupil diffraction)
 - Less critical for SH

between 0.25 and 1 mag in the photon noise regime
(from 30 to 60° from zenith)
between 0.5 and 1.8 mag in the detector noise regime
(from 30 to 60° from zenith)
SCAO performance – on axis

Without tel. defects

\[\text{Sr} = 76 \% \] @K

With tel. defects

\[\text{Sr} = 69 \% \]
SCAO performance – on axis

Sr = 76 % @K Sr = 69 %

Without tel. defects With tel. defects
SCAO performance - anisoplanatism

<table>
<thead>
<tr>
<th>Layer nb</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>$C_n^2 [%]$</td>
<td>33.5</td>
<td>22.3</td>
<td>11.2</td>
<td>9.0</td>
<td>8.0</td>
<td>5.2</td>
<td>4.5</td>
<td>3.4</td>
<td>1.9</td>
<td>1.1</td>
</tr>
<tr>
<td>h [m]</td>
<td>0</td>
<td>600</td>
<td>1200</td>
<td>2500</td>
<td>5000</td>
<td>9000</td>
<td>11500</td>
<td>12800</td>
<td>14500</td>
<td>18500</td>
</tr>
</tbody>
</table>

Diagram showing the C_n^2 profile with different zenith angles and off-axis angles.
LTAO performance

9 layers to be reconstructed in the tomographic process

5/6 LGS in less than 1.25' (radius)
Without tel. defects with tel. defects

Sr=53.5 Sr = 48.5

In collaboration with M. LeLouarn (ESO)
LTAO performance

In collaboration with M. LeLouarn (ESO)

9 layers to be reconstructed in the tomographic process

5 / 6 LGS

In less than 1.25’ (radius)
LTAO sky coverage: mean features

LQG

Dedicated DM

Wide band+ADC

LIFT

- TTF with full pupil
- No aliasing
Sky coverage estimation: starfield count

- Generate a starfield (Besançon model)
 - Compute performance for each star (alone): highest perf=1NGS perf
 - Select the 5 « best » stars
- Form couples of stars among these 5
 - Compute performance for each couple: highest perf=2NGS perf

Whole sky (1000 starfields)

<table>
<thead>
<tr>
<th>L_0 [m]</th>
<th>RON</th>
<th>SC 1NGS</th>
<th>SC 2 NGS</th>
</tr>
</thead>
<tbody>
<tr>
<td>25m</td>
<td>1ph.e-</td>
<td>93%</td>
<td>99%</td>
</tr>
<tr>
<td></td>
<td>6ph.e-</td>
<td>81%</td>
<td>98%</td>
</tr>
<tr>
<td>50m</td>
<td>1ph.e-</td>
<td>54%</td>
<td>92%</td>
</tr>
<tr>
<td></td>
<td>6ph.e-</td>
<td>39%</td>
<td>92%</td>
</tr>
</tbody>
</table>

98% whole sky, 92% at galactic pole
SCAO \Rightarrow LTAO

- Brigh NGS \Rightarrow $SR_{\text{SCAO}} > SR_{\text{ATLAS}}$
- But: $mag < 13$ typically \Rightarrow $SC < 1\%$

\sim Mag 13
Up to 15 / 16 with pyramid
LTAO or GLAO (for large spaxel)

Largest Gain for \(\lambda = [1 – 2] \, \mu m \)

- EE(50 mas) : gain > 10
- EE(75 mas) : gain > 5
- EE(100 mas) : gain > 3
LTAO implementation?

- Decomposition of LTAO in 3 main blocks
 - LGS WFS
 - Tomography
 - NGS WFS
 - TT / defoc fast sensing = LIFT
 - Truth sensor = SCAO WFS / LIFT?

Some are common to all instruments: LGS, tomo

One is very specific to each instrument: NGS
Conclusions

- SCAO interest
 - for « bright » (< 13-15), on axis (< 10") objects
 - Several dedicated features for specific applications
 - Non-sideral objects, star environments …
- SCAO systems on E-ELT not so far from XAO system on VLT
- Feedbacks on ELT specificities (adaptive / segmented telescope …)
- From SCAO to LTAO
 - complementary aspects
 - High throughput and low emissivity
 - toward 100 % sky coverage
 - key aspects :
 - LGS tomography => very strong progress these last years (GEMs, CANARY)
 - NGS WFS on very faint GS => new and promising devices
 - TRL are quite good now !